
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 1

Improving Bitmap Index Compression by Data

Reorganization

Guadalupe Canahuate, Hakan Ferhatosmanoglu, Member, IEEE, Ali

Pinar, Member, IEEE

Manuscript received August X, 2006; revised August X, XXXX.

G. Canahuate is with the Department of Computer Science and Engineering, The Ohio State University. E-mail:

canahuat@cse.ohio-state.edu.

H. Ferhatosmanoglu is with the Department of Computer Science and Engineering, The Ohio State University. E-mail:

hakan@cse.ohio-state.edu.

A. Pinar is with the High Performance Computing Research Department, Lawrence Berkeley National Laboratory. E-mail:

apinar@lbl.gov.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 2

Abstract

The volume of data generated by scientific applications through observations or computer simula-

tions can reach to the order of the petabytes. This brings up the need for effective and compact indexing

methods for efficient storage and retrieval of scientific data. Bitmap indexing has been successfully

applied in this domain by exploiting the fact that scientific data are mostly read-only and enumerated

or numerical. Bitmap indices can be compressed for efficient storage. In this paper, we study how to

reorganize bitmap tables for improved compression rates. Our algorithms are used as a preprocessing

step, thus there is no need to revise the current indexing techniques and the query processing algorithms.

We propose Gray code ordering algorithm for this NP-Complete problem, which is an in-place algorithm,

and runs in linear time in the order of the size of the database. We explore the effect of the order in

which columns are evaluated in the Gray code ordering, to further improve the query execution time.

Our experimental results on real data sets show that the compression ratio can be improved by a factor

of 2 to 10 and the query execution times by a factor of 4 to 7.

Index Terms

Data compaction and compression, database design, scientific databases, modeling and management,

performance

I. INTRODUCTION

The volume of data generated by scientific applications through observations or computer

simulations can reach to the order of the petabytes. These scientific applications are core appli-

cations in biology, high-energy physics, climate modeling, and astrophysics. In computational

high-energy physics, simulations are continuously run, and events that are notable for physicists

are stored with all the details. The number of events that need to be stored in one year is in the

order of several millions [28]. In astrophysics, technological advances enabled devoting several

telescopes for observations, results of which need to be stored for later query processing [30].

Genomic and proteomic technologies are now capable of generating terabytes of data in a single

day’s experimentation [37]. These new data sets and the associated queries are significantly

different from those of the traditional database systems, most importantly due to their enormous

size and high-dimensionality. Compared with conventional databases, a data record in a scientific

database involves many more attributes, up to order of hundreds. And the number of tuples is

huge due to the technological advances that make it possible to generate huge volumes of data

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 3

on a daily basis. High energy physics simulations generate millions of events to be stored in a

single year. Due to such large volume of data, even simple queries are extremely slow without an

effective index structure in place. However, neither the well-known multi-dimensional indexing

techniques [27], [11] nor their extensions [18], [17], [6], [8], [7] have been successful in scientific

database systems, partly due to the effects of the infamous dimensionality problems [5], [32]

and the massive scales of these systems.

Bitmap indexing, which has been effectively utilized in many major commercial database

management systems, e.g., Oracle [2], [4], IBM [23], Informix [12], Sybase [10], [13], has also

been the most popular approach for scientific databases [29], [20], [33], [34], [31]. The reason

is that bitmap indices exploit the fact that each attribute is numeric or enumerated, and are

not exponentially affected by the dimensionality of the data since each dimension is indexed

independently. The topic of bitmap indices was introduced in [19]. The basic idea is that data

are partitioned or quantized into several bins, where the number of bins per each attribute

could vary, and each bin is represented by a bitmap vector. Several bitmap encoding schemes

have been developed, such as equality [19], range [9], interval [9], and workload and attribute

distribution oriented [16]. However, due to the amount of space they require, bitmap indices need

to be compressed in order to be effectively utilized. Several compression techniques have been

developed in order to reduce bitmap index size and retain the advantages of fast bit operations

[3], [34], [1], [31].

Most bitmap compression techniques are run-length based. These techniques exploit uniform

segments of a sequence, thus their performances depend directly on the presence of such uniform

segments. Their effectiveness varies for different organizations of the database tuples, since

ordering of tuples affect uniform segments in the columns. In this paper, we study how to

reorder database tuples to achieve higher compression rates. Our techniques are used as a

preprocessing step before compression, only to improve the performance, without affecting

algorithms used for compression and query processing. We state this tuple reordering problem as

a combinatorial optimization problem and propose heuristics for effective solutions for this NP-

Complete problem [21]. We show a reduction of the tuple reordering problem to the traveling

salesperson problem, which is a well-studied combinatorial optimization problem. However,

given the enormous sizes of the databases, we are only restricted to memory and time efficient

heuristics, which takes away the applicability of most frequently used techniques for solving

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 4

traveling salesperson problem such as simulated annealing. We propose Gray code sorting to

order the rows of a bitmap table to produce larger segments of uniform 1’s. In addition, we

propose column ordering techniques that improves query runtime performances beyond the

gains due reduced total table size, by favoring frequently acccessed columns during the Gray

code oredering process. Our algorithm is linear in the size of the database, and an in-place

algorithm, which means it does not require any auxiliary memory allocation. Theoretically, we

prove that our algorithm is optimal when all cells of a bitmap table are full. In practice, our

experiments on scientific data showed significant improvements in compression rates. In many

instances, compressed index size for the reordered file is less than half the compressed size of

the original file. We have also observed a 9.60 times reduction in compressed index size on data

set HEP3, bitmap table for which has 110 columns and 2,000,000 rows. These improvements in

compression rates translate directly into improved query execution times. In our experiements,

the query execution time is reduced by a factor of 4 to 7.

This paper is a significantly extended version of the earlier work in which we introduced the

tuple reordering problem and proposed an in-place Gray code sorting algorithm to reorganize

the data [22]. Our main contributions in this paper can be summarized as follows:

1) We present a comprehensive study for data reorganization, which covers column ordering

as well as tuple ordering. We demonstrate the effect of reorganizing the data using Gray

codes by presenting results for the whole dataset and each bitmap column independently.

2) We apply Gray code ordering to both equality and range encoded bitmaps and perform

experiments showing that our technique is effective for both of them.

3) We compare the reordering time and the compression time. We show that reordering

takes little time when compared to WAH compression time and therefore, Gray code

ordering should be considered as a natural preprocessing step for run-length encoding

based compression algorithms.

4) We present a thorough experimental study that includes comparisons on index sizes and

query runtimes.

The paper is organized as follows. In the next section, we present the related work. Section III

presents compression algorithms for bitmap tables. Section IV discusses the tuple reordering

problem. We first define the problem, and show a reduction to traveling salesperson problem.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 5

Next, we introduce Gray code ordering tailored for the tuple reordering problem and several

metrics to decide the order in which the columns should be evaluated. Experimental results are

presented in Section V. Finally, we discuss future work and conclude with Section VI.

II. RELATED WORK

TSP is a very well-studied problem and has been a testbed to demonstrate the effectiveness

of optimization methods such as simulated annealing and genetic algorithms. A survey of the

literature on TSP solution methods can be found in [24]. In the context of increasing memory

performance of sparse matrix-vector multiplication, a reordering method was proposed to reorder

rows to align nonzeros of the matrix to consecutive positions in columns [21]. Conventional data

structures for sparse matrices require one memory indirection (extra load operation), during

matrix-vector product operations. Pinar and Heath described how to reduce the number of

memory indirections by exploiting nonzeros in consecutive positions in a column. Their method

is based on a graph model that reduces the problem to TSP. Tuple reordering problem is similar,

since a bitmap can be considered as a sparse matrix, with tuples corresponding to rows and bins

for all attributes corresponding to columns. For equality encoded bitmaps, we have a nonzero at

row i and column j iff ith tuple is in bin j. However, the practical aspects of these two problems

are significantly different, hence require different solution techniques. Sparse matrices arising in

many applications define systems of linear equations and are square. Rectangular matrices arise

especially in optimization, but even then the number of columns and the number of rows are

close, at least in the same order. In databases however, the number of tuples, which corresponds

to rows in a sparse matrix, is several orders of magnitude larger than the number bins, which

corresponds to number of columns in a sparse matrix. Sparse matrices are much smaller in

dimension compared to number of tuples in a database.

Recently, traveling salesperson problem solutions have been applied to the reordering of

boolean matrices [14]. This approach adapts classical TSP heuristics by means of instance-

partitioning and sampling. The work by Richards [25] discusses data compression and gray-code

sorting. We proposed the use of Gray code ordering to reorganize the data in order to improve

the bitmap indices compression ratio [22].

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 6

Attribute 1 Attribute 2 Attribute 1 Attribute 2

Tuple b1 b2 b3 b1 b2 b3 b1 b2 b3 b1 b2 b3

t1 1 0 0 0 0 1 1 1 1 0 0 1

t2 0 1 0 1 0 0 0 1 1 1 1 1

t3 1 0 0 1 0 0 1 1 1 1 1 1

t4 0 0 1 0 0 1 0 0 1 0 0 1

t5 0 1 0 0 1 0 0 1 1 0 1 1

t6 0 0 1 1 0 0 0 0 1 1 1 1

(a) Basic (Equality) Encoding (b) Range Encoding

Fig. 1. Bitmap examples for a table with two attributes and three bins per attribute.

III. COMPRESSING BITMAP TABLES

Bitmap tables are a special type of bit matrices. Each binary row in the bitmap table represents

one tuple in the database. The bitmap columns are produced by quantizing the attributes in the

database into categories or bins. Each tuple in the database is then encoded based on which bin

each attribute value falls into.

For the simple bitmap encoding (also called equality encoding) [19], if a value falls into a bin,

this bin is marked “1”, otherwise “0”. Since a value can only fall into a single bin, only a single

“1” can exist for each row of each attribute. After binning, the whole database is converted into

a huge 0-1 bitmap, where rows correspond to tuples and columns correspond to bins. Figure 1

shows an example using a table with two attributes, each partitioned into three bins. Figure 1(a)

shows the equality encoded bitmap for this table. The first tuple t1 falls into the first bin in

attribute 1, and the third bin in attribute 2. Note that after binning we can treat each tuple as a

binary number. For instance t1 = 100001 and t2 = 010100.

For range encoding bitmaps [9], a bin is marked “1” if the value falls into it or a smaller

bin, and “0” otherwise. Figure 1(b) shows the range encoded bitmap corresponding to the same

example. Using this encoding, the last bin for each attribute is all 1s. Thus, we do not explicitly

store this column. Since bin 3 is not stored for any of the attributes, the first tuple t1 is represented

by the binary number 1100.

Bitmap indices can provide very efficient performance for point and range queries thanks to

fast AND and OR bit operations over the bitmaps.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 7

With equality encoded bitmaps a point query is executed by ANDing together the bit vectors

corresponding to the values specified in the search key. For example, finding the data points

that correspond to a query where Attribute 1 is equal to 3 and Attribute 2 is equal to 5 is

only a matter of ANDing the two bitmaps together. Bitmap Equality Encoded are optimal for

point queries [9]. Range queries are executed by first ORing together all bit vectors specified

by each range in the search key and then ANDing the answers together. If the query range

for an attribute queried includes more than half of the cardinality then we execute the query by

taking the complement of the ORed bitmaps that are not included in the range query. With range

encoded bitmaps the columns used and the operations performed to execute a query depend on

the range being queried.

No matter which bitmap encoding we use, the bitmap index table is a 0-1 table. This table

needs to be compressed to be effective on a large database. General purpose text compression

techniques are clearly not suitable for this purpose since they significantly reduce the efficiency

of queries [15], [33]. Specialized bitmap compression schemes have been proposed to overcome

this problem. These schemes are based on run-length encoding, i.e., they replace repeated runs

of 0’s or 1’s in the columns by a single instance of the symbol and a run count. These methods

not only compress the data but also enable fast bitwise logical operations, which translates into

faster query processing.

Run length encoding [26] can therefore be used over every column to compress the data

when long runs of “0” or “1” blocks become available. Pure run length encoding is not a good

strategy because of its accessing inefficiency. The two most popular compression techniques for

bitmaps are the Byte-aligned Bitmap Code (BBC) [3] and the Word-Aligned Hybrid (WAH) code

[34]. Unlike traditional run length encoding, these schemes mix run length encoding and direct

storags. BBC stores the compressed data in Bytes while WAH stores it in Words. WAH is simpler

because it only has two types of words: literal words and fill words. In our implementation it is

the most significant bit that indicates the type of word we are dealing with. Let w denote the

number of bits in a word, the lower (w-1) bits of a literal word contain the bit values from the

bitmap. If the word is a fill, then the second most significant bit is the fill bit, and the remaining

(w-2) bits store the fill length. WAH imposes the word-alignment requirement on the fills. This

requirement is key to ensure that logical operations only access words.

Figure 2 shows a WAH compressed bit vector representing 128 bits. The first line is the

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 8

128 bits 1,20*0,4*1,78*0,30*1

31-bit groups 1,20*0,4*1,6*0 62*0 10*0,21*1 9*1

groups in hex 400003C0 00000000 00000000 001FFFFF 000001FF

WAH (hex) 400003C0 80000002 001FFFFF 000001FF

Fig. 2. An example of a WAH compressed bit vector.

original bit vector. The vector starts with one 1, followed by twenty 0’s, four 1’s seventy eight

0’s, and thirty 1’s. In this example, we assume 32 bit words. Under this assumption, each literal

word stores 31 bits from the bitmap, and each fill word represents a multiple of 31 bits. The

second line in Figure 2 shows how the bit vector is divided into 31-bit groups, and the third line

shows the hexadecimal representation of the groups.

The last line shows the values of WAH words. Since the first and third groups do not contain

greater than a multiple of 31 of a single bit value, they are represented as literal words (a 0

followed by the actual bit representation of the group). The fourth group is less than 31 bits

and thus is stored as a literal. The second group contains a multiple of 31 0’s and therefore is

represented as a fill word (a 1, followed by the 0 fill value, followed by the number of fills in

the last 30 bits). The first three words are regular words, two literal words and one fill word.

The fill word 80000002 indicates a 0-fill of two-word long (containing 62 consecutive zero bits).

The fourth word is the active word, and it stores the last few bits that could not be stored in a

regular word. Another word with the value nine, not shown, is needed to store the number of

useful bits in the active word. Logical operations are performed over the compressed bitmaps

resulting in another compressed bitmap.

IV. IMPROVING BITMAP COMPRESSION BY TUPLE REORDERING

Run-length encoding and its variants compress the bitmap by replacing a sequence of 0’s or

1’s by a single instance of the symbol and a run count. The performance of these encodings

depend on the presence of such uniform sequences. By reorganizing the data we can produce

longer uniform segments, therefore, improve the performance of the compression scheme. In

this section, we study the problem of reorganizing bitmap tuples for more efficient run-length

encoding, which we call the tuple reordering problem. First we define the problem formally,

and then show a reduction to the traveling salesperson problem. We continue with proposed

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 9

t1

t2

t3

t4

t5

t6





























1 0 1 0 0 1

0 1 0 1 0 1

1 0 0 1 1 0

1 0 1 0 0 1

1 0 1 0 1 0

0 1 0 1 1 0





























(a) Original table

t1 t2 t3 t4 t5

t6 3 1 1 3 2

t5 1 3 1 1

t4 0 2 2

t3 2 2

t2 2

(b) Difference values

t1

t4

t5

t3

t6

t2





























1 0 1 0 0 1

1 0 1 0 0 1

1 0 1 0 1 0

1 0 0 1 1 0

0 1 0 1 1 0

0 1 0 1 0 1





























(c) Reordered table

Fig. 3. Example for tuple reordering

solutions.

A. Problem Formulation

The goal is to increase the performance of run-length encoding by reordering tuples so that

longer uniform segments, and thus fewer number of blocks are generated. Run-length encoding

packs each uniform segment into a block and stores the length of the block. Thus the storage

size is determined by the number of such blocks. Consider two consecutive tuples in the bitmap

table. If the tuples are on the same bin for an attribute, they will be packed to the same block. If

not, a new block should start. Efficiency can be enhanced by reordering tuples so that they fall

into the same bins as much as possible. An example is illustrated in Figure 3. In this example,

the original table has 12 blocks, whereas the reordered table in Figure 3(c), requires only 7

blocks.

Let diff(ti, tj) denote the number of attributes that tuple ti and tuple tj fall in different bins,

and let πi denote the ith tuple in ordering π. Observe that diff(πi, πi+1) gives how many new

blocks start after the ith tuple in the reordered file when run-length encoding is used. An example

for computing the diff values is illustrated in Figure 3(b). For example diff(t1, t2) = 2, since

tuples t1 and t2 fall into different bins for the first two attributes. We can now formally define

the tuple reordering problem.

Definition 4.1 (Tuple reordering problem): Let π be an ordering of m tuples so that πi denotes

the ith tuple in the ordering. Tuple reordering problem is the problem of finding an ordering π

that minimizes
m−1
∑

i=1

diff(πi, πi+1). (1)

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 10

In Equation 1, we sum diff values over all consecutive tuples to attain the number of new runs

that start for the whole table. The first tuple requires starting a run for each attribute, therefore

the number of blocks can be computed as A +
m−1
∑

i=1

diff(πi, πi+1), where A is the number of

attributes. Thus an ordering that minimizes Equation 1 also minimizes the number of blocks

in the reordered table. For instance, Equation 1 returns 2 + 2 + 2 + 1 + 2 = 9 for the initial

ordering in Figure 3(a), which means with the addition of the number of attributes, there will be

9 + 3 = 12 blocks in the compressed table. For the reordered table in the same figure however,

Equation 1 returns 0 + 1 + 1 + 1 + 1 = 4, which means the reordered table will have only 7

blocks after compression.

1) Reduction to the Traveling Salesperson Problem: Given a graph with weights on edges

between all pairs of vertices, the traveling salesperson problem (TSP) tries to find an ordering

of the vertices that minimizes the sum of weights between consecutive vertices in the ordering.

Intuitively, we can consider TSP as finding a shortest path that visits all cities in a given map.

Here, cities correspond to vertices of a graph, and the weight of an edge is assigned as the

distance between the associated vertices. Below, we describe a graph model to reduce the tuple

reordering problem to the TSP.

In our reduction, we have vertices to represent tuples, since we are seeking an ordering of the

tuples. We define a weight function on edges, so that an optimal solution to the TSP problem

minimizes the number of runs in the run-length encoding of the reorganized bitmap. Given a

bitmap B as a set of tuples, define its graph GB = (V, E) so that each tuple ti in B is represented

by a vertex vi, and each pair of vertices vi and vj is connected by an edge (vi, vj) in E. Define

the weight of an edge (vi, vj) as diff(ti, tj) as defined in Section IV-A. This graph definition

reduces the tuple reordering problem to the TSP, as we formalize below.

Theorem 4.2: Given a bitmap B, define graph GB = (V, E) so that each tuple ti is represented

by a vertex vi ∈ V . All pairs of vertices vi and vj are connected by an edge with weight diff(ti, tj).

An optimal TSP solution on GB , gives an optimal solution to the tuple reordering problem.

Proof: A solution to the TSP gives an ordering of vertices that minimizes the sum of edge

weights between consecutive vertices. When we replace vertices with tuples, we get an ordering

of tuples that minimizes the sum of diff values between consecutive tuples. Minimizing the total

edge weight corresponds to minimizing Equation 1, thus the number of runs in the run-length

encoding of the reorganized bitmap table.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 11

3
12

2

1
3

2

2

1
1

3

3

1

2

1t t 2

t 3 t 4

t 5 t 6

Fig. 4. TSP graph for the bitmap table in Figure 3. Dark arrowed edges indicate an optimal TSP solution as t1, t4, t5, t3, t6,

and t2.

B. Heuristics for Tuple Reordering

In this section we first discuss feasibility of reorganizing a database and necessary conditions

for an ordering algorithm to be effective. Then we describe how to adopt Gray codes for tuple

reordering, and show that this technique is optimal under certain conditions. Given the fact that

Gray codes favor the first bitmap columns, i.e. the impact of Gray code decreases with the

number of columns, we provide several criteria to choose the order in which the columns should

be evaluated. Finally, we discuss using conventional TSP heuristics for tuple reordering.

Due to the enormous cost of merely moving the data to implement a reorganization, databases

are seldom physically reorganized in practice. Thus we need to be careful while designing

algorithms to find such reorderings. For an ordering algorithm to be applicable to reorganizing

a database, it needs to be memory efficient. The memory requirement needs to be at most

linear in the order of the number of tuples. Preferably, the algorithm should be in-place, i.e.,

it should not use any auxiliary memory. An effective technique should also be local, i.e., it

must be sufficient to apply our techniques to portions of the database to improve compression

rates, since it will be computationally inefficient, if not infeasible, to apply a technique to the

whole database. This locality provides scalability, since the method can be applied to databases

of arbitrary sizes. Reordering database tuples has only local effects, thus it is easy to localize

reordering algorithms to only portions of the database. Even when an algorithm is local, it is

still essential to keep the memory requirements low, since the effectiveness of the algorithm will

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 12

increase if it can be applied to larger portions of the database.

The Gray code ordering proposed in the subsequent section is an in-place algorithm and thus

optimal in terms of memory requirement. It can even be applied to the whole database, since

it has a regular access pattern and requires a small number of passes over the bitmap table.

Alternatively, conventional TSP solution techniques can be adopted for the tuple reordering

problem. However, these techniques almost invariably require additional storage, which is often

superlinear in the number of tuples.

1) Gray code ordering: A Gray code is an encoding of binary numbers so that adjacent

numbers differ only by a single digit. For instance (000, 001, 011, 010, 110, 111, 101, 100) is a

binary Gray code. Binary Gray code is often referred to as the “reflected” code, because it can

be generated by the reflection technique, as we describe below.

1) Let S = (s1, s2, . . . , sn) be a Gray code.

2) First write S forwards and then append the same code S by writing it backwards, so that

we have

(s1, s2, . . . , sn, sn, . . . , s2, s1).

3) Append 0 at the beginning of the first n binary numbers, and 1 at the beginning of the

last n binary numbers.

As an example, take the Gray code (0, 1). Write it forwards, then add the same sequence back-

wards, and we get: (0, 1, 1, 0). Then we add 0’s and 1’s to get: (00, 01, 11, 10). We can use this

new sequence as an input to our algorithm. After the reflection step we get (00, 01, 11, 10, 10, 11, 01, 00).

We add the first digits to attain: (000, 001, 011, 010, 110, 111, 101, 100). It is important to note

that Gray codes are not unique, and different orders on the same group of numbers might satisfy

the Gray code property. We use the term fundamental Gray code to refer to a Gray code generated

by the reflection technique described above with using (0, 1) as the initial sequence.

We refer to ordering a set of numbers with respect to the fundamental Gray codes as Gray

code ordering, which we describe next. We first define the Gray code rank of a number.

Definition 4.3 (Gray code rank): The Gray code rank g(s) of an n-bit binary number s is the

rank of this number in an n-bit fundamental Gray code.

For example, g(0000) = 1, since it is the first number in the 4-bit fundamental Gray code.

And g(0001) = 2, since it follows 0000 in the fundamental Gray code.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 13

Definition 4.4 (Gray code sorting): A sequence S = (s1, s2, . . . , sm) is Gray code sorted iff

g(si) ≤ g(si+1)

for i = 1, 2, . . .m− 1, where g(si) denotes the Gray code rank of si.

As an example, the sequence (0001, 0010, 0101, 1100, 1110, 1011) is Gray code sorted because

g(0001) = 2 < g(0010) = 4 < g(0101) = 7 < g(1100) = 9 < g(1110) = 12 < g(1011) = 14.

This brings the question of how to efficiently order a set of numbers to be Gray code sorted.

We reverse the fundamental Gray code generation process, to sort numbers with respect to the

fundamental Gray code. As the first step, we divide numbers as those that start with 0 and those

that start with 1. Clearly those that start with 0 will precede others in the ordering. Then we

recursively order those that start with 0. The same is applied to the second group of numbers

that start with 1, but we need to reverse their ordering due to the reflective property of the Gray

code. In Algorithm 1, we present the pseudo-code of this algorithm. In this algorithm, S(A, i, j)

denotes the jth significant bit of the ith tuple in table A. The reversion does not need to be a

separate step in the algorithm, but we present it separately for clarity of the presentation.

Lemma 4.5: Algorithm 1 orders numbers in A to be Gray code sorted, when initially invoked

with GC-sort (A, 1, m, n), where m is the number of tuples, and n is the number of bits.

Proof: The proof is based on induction on the number of bits. First observe that recursive

calls respect the previous orderings, since after one pass, the recursive calls only operate on the

segment of tuples that all start with the same bit prefix.

The inductive basis is for n = 1, when the correctness of the algorithm is trivial. It is also easy

to see that numbers that start with 0 should precede those that start with 1 for Gray code sorting.

By the inductive hypothesis, the numbers that start with 0 are sorted correctly by the algorithm

according to their last n − 1 bits, and adding 0 does not affect their Gray code precedence.

Similarly, numbers that start with 1 are Gray code sorted recursively according to their last

n− 1 bits, however putting 1 at the beginning requires the reflected order, which we achieve by

the Reverse (j + 1, end) operation.

Figure 5illustrates this algorithm. It is worth stressing that Algorithm 1 is an in-place algorithm,

which is critical while dealing with large data sets.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 14

GC-sort (A, start, end, b)

1: i← start

2: j ← end

3: while i < j

4: Decrement j until S(j, b) = 0

5: Increment i until S(i, b) = 1

6: if i < j then

7: Swap the ith and jth tuples on the table

8: end if

9: end while

10: if b then

11: GC-sort (A, start, j, b + 1)

12: GC-sort (A, j + 1, end, b + 1)

13: Reverse (j + 1, end)

14: end if

Algorithm 1: An in-place Gray code sorting algorithm. GC-sort (A, start, end, b) sorts numbers

between indices start–end in A according to their least significant b bits in Gray code order.

S(A, i, j) denotes the jth significant bit of the ith number in table A.

Since consecutive numbers differ only at one bit, Gray code numbers have maximum bit-

level similarity between consecutive numbers. This property can be effectively used for ordering

database tuples, since every tuple in the database can be considered as an n-bit binary number.

By Gray code sorting, we can impose similarity between consecutive numbers. And if all distinct

tuples exist, i.e., if all cells of the bitmap table are full, Gray code sorting will produce an optimal

ordering. We formalize this claim with the following theorem.

Theorem 4.6: Gray code ordering provides an optimal solution for the tuple reordering prob-

lem, if all cells of the bitmap table are full.

Proof: The algorithm orders identical tuples consecutively. Thus by the definition of Gray

codes, at most one bit differs between two consecutive tuples, since all cells of the database

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 15

Fig. 5. Illustration of Algorithm 1.

table are full, which implies optimality.

By the result of Theorem 4.6, Algorithm 1 gives an optimal solution when all cells are full,

however in practice all cells will be full very rarely, and the solution may not be optimal. Gray

code ordering is more effective when most of the cells are full, which means its effectiveness

increases with increasing number of rows, i.e., larger databases. Its performance also depends on

the number of columns, which depends on the number of attributes, and the number of bins per

attribute. Increasing these terms increases the number of cells in the bitmap table, making the

table more sparse. Nevertheless, even when the bitmap table has a lot of empty cells, Gray code

ordering imposes bit-level similarity between consecutive tuples very effectively as evidenced

by our experimental results.

In Figure 6, we illustrate how Gray code ordering reorganizes the database tuples. In this

figure, each bar represents one column in the bitmap. Shown are the first 4 columns of the

bitmap table. The white portion of the bar represents the continuos sequence of 0s while the

black portion represents the continuos sequence of 1s. The left part of the figure represents

the numerical (lexicographic) sorting of the tuples, the same organization we would achieve by

physically ordering the tuples by all the attributes at the same time. The right part represents

the Gray code ordering. It can be seen that with Gray code ordering many runs concatenate to

form longer runs than using numeric/lexicographic ordering, making Gray code ordering more

effective. Note that the number of runs in each column increases as we go further to the right of

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 16

Fig. 6. Illustration of Gray code ordering effectiveness. On the left is the lexicographic (numeric) order of a boolean

table of 4 columns. On the right is the Gray code ordering of the same table. White and black blocks represent

runs of 0s and 1s, respectively. Gray code produces less and longer runs than lexicographic order.

the bitmap table. This means that the first columns evaluated would have a very small number

of runs, compressing better, but the last columns would potentially have a large number of runs.

For this reason, we consider different criteria to select the order in which the columns should

be evaluated.

C. Criteria for Column Ordering

An optimal solution for the TSP formulation of the tuple reordering problem will not be

affected by the ordering of the columns. However, since the Gray code ordering algorithm

proposed here orders one column at a time, its performance is affected by the order in which

the columns are processed.

As can be seen in Figure 6, Gray code ordering aligns the rows so that the runs in the first few

columns are perfect, but its performance deteriorates as we move towards the end. This naturally

raises the question of how to order the columns for maximum compression rates and/or faster

query execution times.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 17

In this section we explore two approaches for deciding in which order to evaluate the bitmap

columns in the Gray code ordering algorithm. For the first approach, we use the bitmap data

itself to decide which column to evaluate first. For the second approach, we evaluate the columns

by their access frequency extracted from the query history files.

1) Reordering by Bitmap Data: Here we investigate the column ordering problem in the

absence of query histories. For efficiency considerations, we have to restrict our column selection

criteria to only those that remain invariant during the ordering process. The most prominent

property is the set bits, i.e., the number of 1s in the column denoted by s. We use si to refer to

the set bits in column i. Consider the set of columns that correspond to the bins for an attribute.

For the basic bitmap encoding, only one of these columns would have a set bit for each tuple,

the rest would be 0s. As a consequence, a run of 1s in a column corresponds to runs of 0s in all

other columns for the same attribute. Therefore, selecting the columns with more set bits first

would be a nice greedy strategy for equality encoding bitmaps. For range encoded bitmaps on

the other hand, all columns have a set bit for tuples that fall to the smallest bin. In this case,

ordering by column for the smallest bin, say column i, generates runs of si tuples on all columns

for this attribute. Therefore, one can anticipate that selecting the columns with fewer set bits

(which are most likely the smaller values) would produce better results.

As another criterion, we define compressibility as a function of the set bits in the column. The

intuition is that the more even the number of 0s and 1s in the column, the harder it would be

to compress, since there would be more chances of having interrupted, short runs. Intuitively,

putting the harder to compress columns in the beginning makes sense, since the later columns,

which are easier to compress, would compress well because the majority of the bits have the

same value. Compressibility of a column can be expressed as:

Ci = |
n

2
− si|

where n is the number of tuples or bits in the column. Therefore, the bigger the number Ci, the

easier it is to compress the column.

Using any of these criteria, we can evaluate the columns in two directions: increasing and

decreasing order. When we order the columns by the number of set bits in decreasing order

we evaluate the columns with more number of set bits first. When we order the columns by

their compressibility in increasing order we evaluate the columns that are potentially harder to

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 18

compress first. Note that this ordering would not necessarily improve the overall compression.

The average run length after Gray code ordering will decrease exponentially if the bits are

uniformly distributed. In this case, the first few difficult columns will compress well but the

remaining columns would be forced to have more segments. Nevertheless, this evaluation order

would decrease the maximum compressed column size of the bitmap table, since the harder

to compress columns would be first. This lower bound on the maximum compressed bitmap

column size would translate into better query performance since the worse-case query, i.e. one

querying the biggest columns, would perform faster since the query time depends on the size

of the columns involved in the query. Similarly, ordering the columns by compressibility in

decreasing order, would evaluate the easier to compress columns first, extending the clustering

power of Gray code ordering to the later columns.

Since the bitmap encoding is done by attribute, one could think that reordering of the columns

would be more effective if it was done by attribute, i.e. order the attributes and then the columns

within the attributes. However, by using this criterion the clustering power of Gray code is

drained faster than considering each column independently. For this reason, the experiments

reported in the paper are using column ordering without considering the attributes to which the

columns belong to.

The Gray code algorithm described in the previous section, effectively divides the columns

into segments and orders each segment independently in place. Trying to fit our column ordering

criteria to improve the performance of the reordering algorithm, we should decide which column

to evaluate next based on the the segments produced by the Gray code order itself instead of

the whole column.

We generalize the previous criteria and define them over the segments produced by the Gray

code ordering. We denote by si(x, y) the number of 1s in column i between rows x and y. We

denote by

Ci(x, y) = |
(y − x + 1)

2
− si(x, y)|

the compressibility of column i between rows x and y.

We call static column ordering, to the scheme where the order of the columns is predetermined

based on the chosen criterion. We call dynamic column ordering, to the scheme where the next

column is selected based on the current order of the rows, i.e. based on the chosen criterion

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 19

over the segments produced by the Gray code performed so far. The dynamic scheme produces

the same results as the static scheme when the segment considered is always the whole data set

(x = 0 and y = rows− 1).

Note that, in order to be able to implement the dynamic scheme, the Gray code algorithm

cannot be recursive since we need the boundary positions for each segment of the current column

in order to decide which column to order next.

GC-sort-no-recur (A, start, end)

1: i← start

2: j ← end

3: b← 0

4: splitPoints[start]← 1

5: splitPoints[end]← 1

6: colOrder[b]← getNextCol(b)

7: while b < stop

8: reverse← false

9: i← start

10: while i < end

11: j ← getEndPoint(i)

12: p← order(i, j, b, reverse)

13: splitPoints[p]← 1

14: reverse← not reverse

15: i← j + 1

16: end while

17: b← b + 1

18: colOrder[b]← getNextCol(b)

19: end while

Algorithm 2: The non-recursive version of Algorithm 1 including column ordering.

Algorithm 2 presents the pseudocode for the non-recursive version of the reordering algorithm.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 20

Even though maintaining the start and end points for each segment is exponential in the column

ordered, the number of segments cannot be bigger than the number of rows. Therefore, we define

an array of split points of size number of rows and initialize it to 0. We set the position of the

array to 1 if it is a boundary position. Lines 4 and 5 set the start and end positions as boundary

positions. Notice that as we move along in the column ordering, the split points only increase,

i.e. potentially we add one split point to each segment when we order the next column. The

procedure getNextCol(b) returns the (b+1)th column in the ordering by evaluating the chosen

criterion over the segments defined in splitPoints. The variable reverse is true if the Gray

code should order the segment in reverse order, i.e. first the 1s and then the 0s. The procedure

getEndPoint(i) returns the next index > i that is set in splitPoints. The order(i, j, b, reverse)

procedure orders the rows between i and j by column colOrder[b] in reverse order, and return

the split point for the segment (it returns an end point if there is no split, i.e. all the bits are the

same value).

For the dynamic scheme we apply the following column choosing criteria based on the

segments (implemented in procedure getNextCol).

For the number of set bits, we find the number of set bits in the longest segment produced

by the Gray code ordering. Thus, the column ordering criterion would be

si(x
∗, y∗)

where x∗ and y∗ correspond to the start and end position of the longest segment in column i.

For dynamic compressibility, we sum the compressibility of each segment produced by the

Gray code ordering. Thus, the column ordering criterion in this case would be

Σx,y

(y − x + 1)

n
Ci(x, y)

where the summation indices x and y are the start and end points of all the segments produced

by the Gray code order executed so far. By adopting the dynamic scheme for column ordering,

the time complexity of the reordering algorithm becomes O((nd)2), where n is the number of

rows and d is the number or columns in the bitmap table. In other words, we lose one desirable

property of our Gray code ordering which is no longer linear in the size of the bitmap table.

In addition, the memory requirement is O(n) to store the splitPoints array. For these reasons

and because the difference in compressed size between the different Gray code orderings was

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 21

never more than 20% in our experiments, we do not include results from the dynamic scheme

and propose only the static scheme.

2) Reordering by Query History Files: A query history file contains a cumulative history of

the queries that have been executed by the users. Form this file we can derive how often each

column of the bitmap index is accessed by the users. In order to achieve faster query runtimes, we

want to place the frequently accessed columns early in the ordering. Therefore, in the presence

of query histories, one can sort the columns based on frequencies of access to minimize average

query runtimes.

Generally, real world queries present a skew distribution, i.e. few columns are accessed very

often while many others are rarely accessed. In order to represent this phenomenon we randomly

generate a query history file that follows a Zipf distribution. The classic case of Zipf’s law is a

1/n function. Given a set distributed frequencies, sorted from most common to least common,

the second most common frequency will occur 1/2 as often as the first one. The third most

common frequency will occur 1/3 as often as the first one. The nth most common frequency

will occur 1/n as often as the first one.

D. Conventional TSP heuristics

TSP heuristics can be used to construct an ordering or improve a given ordering. However,

the current approaches are not directly applicable to our target application, where the number

of tuples (vertices of the TSP graph) may be easily in the order of millions, and the enormous

sizes of these problems require memory- and time-efficient heuristics. Explicit construction of

the TSP graph is not feasible for reordering database tuples, since the TSP graph has







n

2







potential edges. We can drop edges whose weights are zero, but even then, the number of edges

will be O(n2) for a bitmap table. The infeasibility of constructing the TSP graph restricts us to

simple greedy strategies where edge weights can be computed on the air during the course of

the algorithm. In our experiments, we used a 2-switch technique, which repeatedly seeks for a

pair of vertices that decrease the solution value when they switch positions. To further improve

efficiency, we restricted the search for pairs to only those within a specified distance. It will be

worthwhile to observe performances of other TSP heuristics from the literature, but it should be

noted that one can use only a limited selection due to the very large sizes of the problems, and

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 22

more importantly Gray code is already very effective and an in-place algorithm.

V. EXPERIMENTAL RESULTS

In this section we discuss our empirical work to validate our proposed methods. We applied

our reordering techniques to several data sets from various applications to observe the decrease

in the sizes of the compressed bitmap tables. We also present the query execution times for

both point and range queries. As we will present in detail, we have observed significant im-

provements, which directly translate into improvements in query processing times. Remember

that scientific databases, which are the main motivation for our research, are mostly read-only,

thus reorganization needs to be done only once, for faster processing times in all future queries.

Nevertheless, we also present the running times and scalability of our methods to prove the

feasibility of application of our methods on very large databases.

It is also worth noting that our methods are used as a preprocessing step before actual

compression algorithms, to align 1’s in the bitmap table into consecutive positions. Thus, any

compression algorithm can be employed to compress our reorganized data. In our experiments

we used WAH compression algorithm [35], [36].

A. Performance of Gray Code Ordering

In this section, we evaluate the performance of Gray code ordering. First, we present the

extraordinary improvements in compression. Then we show that these improvements come only

at a minor cost, and finally we demonstrate how our techniques can scale to larger datasets.

1) Compression Size: We present the effectiveness of our methods based on the improvement

factor, which we compute as the ratio of the compressed bitmap table size of the original data

to the compressed bitmap table size of the reordered data, i.e.,

improvement factor =
compressed size of original

compressed size after reordering

Thus, an improvement factor of 5 means, compressed reordered data takes 5 times less space

than the compressed original.

We also present the overall improvement, which we compute as the ratio of the uncompressed

bitmap table size to the compressed bitmap size of the reordered data, i.e.,

overall improvement =
uncompressed size

compressed size after reordering

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 23

TABLE I

IMPROVEMENT IN COMPRESSION OF REAL DATA SETS

Compressed size Improv. Improv.

Bitmap table (32-bit Words) over over

Dataset #cols #rows Original Reordered WAH Uncompr.

HEP1 122 2, 173, 762 3, 181, 057 562, 508 5.66 14.73

HEP1 RE 110 2, 173, 762 3, 302, 006 507, 034 6.51 14.74

HEP2 907 2, 173, 762 11, 482, 527 7, 008, 601 1.64 8.79

HEP3 110 2, 000, 000 2, 349, 302 244, 761 9.60 28.09

histogram1 64 112, 361 209, 066 54, 605 3.83 4.12

histogram2 192 112, 361 686, 949 257, 185 2.67 2.62

irvector16 123 19, 997 14, 858 2, 847 5.22 27.00

irvector32 230 19, 997 23, 749 7, 428 3.20 19.18

Table I reveals the effectiveness of our Gray code reordering algorithm on 8 data sets from

various applications. In this table, the first three columns give the name of the problem, number of

tuples, and number of columns in the bitmap tables, respectively. The next two columns present

the sizes of the compressed bitmap tables for the original and reordered data, respectively. The

last two columns present the improvement factor and the overall improvement, respectively.

Out of the 8 data sets, the first four data sets (HEP1, HEP1 RE, HEP2, and HEP3) are from

real high energy physics applications. HEP1 and HEP1 RE are the equality and range encoding

bitmap tables of the same dataset, respectively. The fifth and sixth bitmap tables, histogram1

and histogram2, come from an image database with 112,361 images. Images are collected

from a commercial CD-ROM and 64-dimensional color histograms are computed as feature

vectors. The data set histogram is partially correlated. The last two data sets are composed

of document feature vectors from 20 newsgroups based on TF/IDF (Term Frequency-Inverse

Document Frequency) followed by reduction based on SVD (Singular Value Decomposition).

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 24

As seen in Table I, compression rates are magnified when the tuples are reordered with respect

to Gray code ordering in all problem instances from all applications. For this experiment the

order of the columns is the original order, i.e. no column ordering criteria is used evaluate the

columns. The improvement factors are 5.66, 6.51, 1.64, and 9.60 for high energy physics data

sets HEP1, HEP1 RE, HEP2, and HEP3, respectively. Comparing the results for these four data

sets, we see that, as expected, improvements are more significant, when the number of columns

is smaller. Fewer number of columns means closer to the optimal situation and therefore leaves

more room for improvement for a reordering algorithm, since more tuples are likely to fall

into the same bins, and thus it is possible to order tuples so that consecutive tuples fall into

same bins in a lot of attributes. A similar trend can be observed in information retrieval data

sets irvector16 and irvector32, where the improvement factors are 5.22 and 3.20,

respectively. Nevertheless, improvements are significant even for larger numbers of columns. It

should also be noted that the Gray code ordering technique can be applied to arbitrary data sizes,

since it is an in-place algorithm. This means the effectiveness of our techniques will only get

better, as we apply these techniques to larger data sets.

As an alternative to Gray code ordering we have also tried the 2-switch heuristic described in

Section IV-D on the TSP graphs for tuple reordering. As expected the runtimes were orders of

magnitude slower compared to Gray code ordering. For instance, Gray code ordering on HEP1,

which has 122 columns and 2,173,762 rows took only 37.4 seconds, whereas the 2-switch

heuristic on the TSP graph took over 1,600 seconds. We have observed some improvement in

the compression (around only 1%), but the huge gap in run time was daunting. We have observed

similar results in the other data sets.

2) Execution time for Gray code ordering: In the next set of experiments, we looked at

the affordability of Gray code ordering as a preprocessing step, and our results are presented

in Figure 7. This figure shows the combined execution time of Gray code ordering and WAH

compression for different number of rows. As can be seen, Gray code ordering takes only 25%

of the time for compression. Therefore we claim that Gray code ordering should be considered

as a natural preprocessing step for runlength encoding based compression algorithms.

3) Scalability: We tested the scalability of our algorithm by measuring the run time as a

function of the bitmap table size. For these experiments we used HEP1 data. The experiments

were run on a Pentium 4 PC with 2.25GHz CPU and 512MB of memory.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 25

Fig. 7. Execution Time for Gray Code Reordering and WAH Compression.

Figures 8(a) and 8(b) show the average times of five runs on different problems of the same

size. That is, the run time of the algorithm for 1,000 rows is reported as the average run time

for 5 randomly selected row sets of size 1,000.

(a) Scalability vs. Number of Rows (b) Scalability vs. Number of Columns

Fig. 8. Algorithm scalability (a) on the number of rows and (b) on the number of columns

Figure 8(a) studies the effect of the number of rows in the run time. For these runs, we used

the first 100 columns and varied the number of rows from 1, 000 to 50, 000. In Figure 8(a), the

x-axis is the number of rows, and the y-axis is the run time in milliseconds, and the results

clearly show the linear relation between the number of rows, and the runtime. Similarly, the

effect of the numbers of columns on the run time can be observed in Figure 8(b). Here, we

fix the number of rows as 50, 000 and vary the number of columns from 10 to 80. All results

confirm the linear relation between the runtime of our algorithm and the bitmap table size.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 26

Fig. 9. Performance for varying numbers of columns

We have also tested the performance of Gray code ordering in terms of solution quality

for varying numbers of columns. We fixed the number of rows at 1,000,000 and tested the

performance of our algorithm by varying the number of bins per attribute to change the number

of columns to be 50, 100, 150, 200, 250, and 300. The results of our experiments are presented

in Figure 9. In this figure original corresponds to the size of the compressed bitmap tables for

the original data, whereas reordered corresponds to the size of the compressed reordered data.

As observed in this figure, compressed data sizes grow with increasing number of columns.

Reordering significantly decreases compressed index size in all cases. The improvement factor

is 2.52, 2.08, 1.64, 1.92, 1.68, and 1.68, when the columns are 50, 100, 150, 200, 250, and 300,

respectively. Fewer number of columns leaves more room for improvement for reordering due

to increased likelihood of tuples in the same bins, which is nicely exploited by our Gray code

ordering algorithm.

B. Effects of column ordering

Table II shows the average and maximum compressed column size for HEP1 and HEP1 RE

datasets when using the column ordering criteria presented in the previous section. The ”Avg

Size” and ”Max Size” columns correspond to the average and the maximum among the com-

pressed column sizes.

While the overall compression ratio is not significantly affected by the order in which the

columns are evaluated, the maximum column size, which translates to the worst case query

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 27

TABLE II

GRAY CODE WITH COLUMN ORDERING. HEP DATA.

HEP1 HEP1 RE

Method Avg Size Max Size Avg Size Max Size

WAH 26, 072 68, 719 30, 018 69, 534

GC Alone 4, 703 35, 327 4, 609 38, 026

Set Bits - Decreasing 4, 863 18, 495 5, 211 28, 100

Set Bits - Increasing 4, 932 39, 407 3, 926 19, 044

Compressibility - Increasing 4, 863 18, 465 4, 505 21, 105

Compressibility - Decreasing 4, 932 39, 394 3, 990 37, 962

execution time, is reduced considerably. For the basic encoded bitmaps (HEP1), the maximum

bitmap size is reduced to half when using the compressibility criteria in increasing order as

opposed to the Gray code ordering alone and it is almost 4 times smaller when compared to the

original WAH compressed bitmaps. This result will automatically translate to improved query

times since it has been already reported that query run times are linearly dependent on the

compressed bitmap table sizes.

For range encoded bitmaps (HEP1 RE), ordering the columns by the set bits criteria in in-

creasing order improves both average size and maximum size, and therefore overall compression

ratio.

Figures 10 and 11 show the number of words per column for different experiments using

HEP1 and HEP1 RE data, respectively. In both figures, the first row, Figures 10(a) and 10(b),

correspond to the column sizes using WAH compression and Gray code reordering, respectively.

The second and third rows in the figure correspond to the compressed bitmap size when using

compressibility criteria for column ordering together with Gray code reordering. The left side is

using the column number in the x axis, and the right side is using the order of the column in

the given column evaluation criteria. For example, using increasing compressibility as the order

of the columns permutes column 34 in the original data, to the first position after reordering.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 28

The number of words in the uncompressed bitmap is about 70K. The maximum compressed

size is decreased to half by the Gray code reordering. As can be seen, in both cases Gray code

indeed favors the first columns but the degradation is distant from the theoretical worse case. In

addition, when we use compressibility in increasing order as the column ordering criteria, the

first and last columns compress better than the middle ones. When we use compressibility in

decreasing order, the performance of Gray code is extended further than if the original order of

the columns is used. The set bits criteria results are not presented since they exhibit the same

trend as the compressibility criteria for these datasets.

C. Improvements in Query Execution Times

For the last set of experiments, we measured the impact of the improved compressed bitmaps

in the execution time of the queries. For this experiment we used HEP1 which has 12 attributes

and 2,173,762 rows. We generated set of 100 random queries varying the dimensionality of

each set. First, we generated point queries over 1, 2, 4, 6, 8, 10, and 12 attributes. Second, we

generated range queries over 12 attributes changing the number of attribute domain values in the

interval to be 1, 2, 3, 4, and 5 producing queries of 12, 24, 36, 48, and 60 columns. Figures 12(a)

and 12(b) show the results of executing point and range queries, respectively.

In both cases the query execution time using the reordered bitmaps requires between 4 and 7

times less time than the corresponding queries using WAH compressed bitmaps over the original

dataset. For point queries, ordering columns with the set bits criteria yields improvements up to

40% consistently, over using the original order of columns. For range queries, as the number of

columns increases and more rows match the query criteria, the execution time for the reordered

bitmaps become very close, but still remarkably faster than the compressed bitmaps that do not

use reordering.

D. Column Ordering by Query History Files

To measure the effect of ordering the columns by query history files (QHF) on query execution

time, we randomly generated a 100 queries QHF following a Zipf distribution. We compressed

the bitmap table using WAH and ran the queries over the original WAH compressed bitmap

and the QHF reordered bitmaps. The compressed size of the QHF reordered bitmap was 5.5

times smaller than the original WAH compressed bitmap and only 3% bigger than the Gray code

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 29

reordered bitmap. The execution time for the 100 queries over the original WAH compressed

bitmaps was 9.5 seconds and the execution time for the same queries over the QHF reordered

bitmaps was 0.063 seconds. This is a speedup of over 150 times.

VI. CONCLUSIONS AND FUTURE WORK

We studied the problem of improving bitmap index compression rates by reorganizing data

layout. Our algorithms reorder database tuples so that consecutive tuples are likely to fall into

same bins to boost the performance of run-length encoding based compression schemes. We

defined the tuple reordering problem, which aims to find an ordering of tuples that maximizes the

similarity (measured by the number of attributes that fall into the same bin), between consecutive

tuples. We proposed Gray code ordering technique for this reordering problem combined with

an evaluation order for the columns to exploit the idea of Gray codes. Our algorithm runs in

linear time in the size of the database, and does not require any extra storage. This provides

the applicability of our algorithm to very large data segments, even to the whole database. The

performance of Gray code sorting algorithm is affected by the order in which we process the

columns. We proposed two criterion for ordering the columns using the number of set bits and

the compressibility of the columns. By evaluating easier to compress columns first, we extend

the clustering power of Gray codes, and by evaluating the harder to compress columns first, we

reduce the worse case number of runs in the bitmap table.

We also presented a reduction of the tuple reordering problem to the well-known, well-

studied traveling salesperson problem (TSP). However, enormous sizes of the problems hinder

applicability of frequently used TSP techniques for the tuple reordering problem. Our experiments

showed that bitmap compression rates can be magnified by reordering database tuples. In many

instances, compressed file size for the reordered file is less than half the compressed size of the

original file. We have also observed a 9.60 times reduction in compressed index size on data set

HEP3, which has 110 columns and 2,000,000 rows. Query execution time over the compressed

reordered bitmaps is shown to require between 4 and 7 times less when compared with WAH

compressed bitmaps.

This paper shows the incontestable advantages of data reorganization for elevating bitmap

index compression and introduces an important problem, which we call the tuple reordering

problem. While our techniques are very effective in decreasing compressed bitmap indices, they

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 30

are only our first steps in this direction, and leaves much for further research. The literature

in TSP is extremely rich, a more detailed study on adopting TSP techniques for the tuple

reordering problem is worth investigating. Although enormous problem sizes hinder most of the

techniques, a thorough study into TSP literature might be able to produce techniques, which avoid

explicit construction of the TSP graph and might be applied to smaller segments of the data.

Finally, existing compression algorithms are tuned for unordered data, whereas our algorithms

provide long uniform segments in the data. We expect significant additional improvements in

compression rates by tuning existing compression algorithms to reorganized data. In general,

an interesting avenue will be better integration of ordering and compression algorithms, where

ordering algorithms are tuned for the compression algorithm to be used, and the compression

algorithms are tuned for the reordered data.

ACKNOWLEDGMENT

We are grateful to John Wu from Lawrence Berkeley National Laboratory for his provision

of some of the data sets, and insightful discussions. We also thank Yong Su from The Ohio

State University, and Tao Tao from University of Illinois at Urbana-Champaign for their earlier

involvement in the previous version of this project.

This work was supported by the Director, Office of Science, Division of Mathematical, Infor-

mation, and Computational Sciences of the U.S. Department of Energy (DOE) under contract

DE-AC03-76SF00098, the DOE Award No. DE-FG02-03ER25573, National Science Founda-

tion (NSF) grant CNS-0403342, and NSF Career Award IIS-0546713. However, any opinions,

findings, conclusions or recommendations expressed herein are those of the authors, and do not

necessarily reflect the views of DOE or NSF.

REFERENCES

[1] S. Amer-Yahia and T. Johnson. Optimizing queries on compressed bitmaps. In The VLDB Journal, pages 329–338, 2000.

[2] G. Antoshenkov. Byte aligned bitmap compression. Technical Report, Oracle Corp., 1994. U.S. Patent number 5,363,098.

[3] G. Antoshenkov. Byte-aligned bitmap compression. In Data Compression Conference, Nashua, NH, 1995. Oracle Corp.

[4] G. Antoshenkov and M. Ziauddin. Query processing and optimization in oracle rdb. The VLDB Journal, 1996.

[5] S. Berchtold, C. Bohm, D. Keim, and H. Kriegel. A cost model for nearest neighbor search in high-dimensional data

space. In Proc. ACM Symp. on Principles of Database Systems, pages 78–86, Tuscon, Arizona, June 1997.

[6] S. Berchtold, D. Keim, and H. Kriegel. The X-tree: An index structure for high-dimensional data. In Proceedings of the

Int. Conf. on Very Large Data Bases, pages 28–39, Bombay, India, 1996.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 31

[7] C. Bohm, S. Berchtold, and D. A. Keim. Searching in high-dimensional spaces: Index structures for improving the

performance of multimedia databases. ACM Computing Surveys, 33:322–373, 2001.

[8] K. Chakrabarti and S. Mehrotra. The hybrid tree: An index structure for high dimensional feature spaces. In Proc. Int.

Conf. Data Engineering, pages 440–447, Sydney, Australia, 1999.

[9] C.-Y Chan and Y. E. Ioannidis. An efficient bitmap encoding scheme for selection queries. In SIGMOD, pages 215–226,

1999.

[10] H. Edelstein. Faster data warehouses. Information Week, December 1995.

[11] V. Gaede and O. Gunther. Multidimensional access methods. ACM Computing Surveys, 30:170–231, 1998.

[12] Informix Inc. Informix decision support indexing for the enterprise data warehouse.

http://www.informix.com/informix/corpinfo/- zines/whiteidx.htm.

[13] Sybase Inc. Sybase IQ Indexes, chapter 5: Sybase IQ Release 11.2 Collection. Sybase Inc., March 1997.

[14] D. S. Johnson, S. Krishnan, J. Chhugani, S. Kumar, and S. Venkatasubramanian. Compressing large boolean matrices

using reordering techniques. In VLDB, pages 13–23, 2004.

[15] T. Johnson. Performance measurement of compressed bitmap indices. In VLDB, pages 278–289, 1999.

[16] N. Koudas. Space efficient bitmap indexing. In Proceedings of the ninth international conference on Information and

knowledge management, pages 194–201. ACM Press, 2000.

[17] K. Lin, H. V. Jagadish, and C. Faloutsos. The TV-tree: An index structure for high-dimensional data. VLDB Journal,

3:517–542, 1995.

[18] D. B. Lomet and B. Salzberg. The hb-tree: A multi-attribute indexing method with good guaranteed performance. ACM

Transactions on Database Systems, 15(4):625–658, December 1990.

[19] P. O’Neil and D. Quass. Improved query performance with variant indexes. In Proceedings of the 1997 ACM SIGMOD

International Conference on Management of Data, pages 38–49. ACM Press, 1997.

[20] E. J. Otoo, A. Shoshani, and S. Hwang. Clustering high dimensional massive scientific dataset. In SSDBM, pages 147–157,

Fairfax, Virginia, July 2001.

[21] A. Pınar and M. Heath. Improving performance of sparse matrix-vector multiplication. In Proc. of Supercomputing 99,

1999.

[22] A. Pinar, T. Tao, and H. Ferhatosmanoglu. Compressing bitmap indices by data reorganization. In International Conference

on Data Engineering, pages 310–321, 2005.

[23] M.V. Ramakrishna. In Indexing Goes a New Direction., volume 2, page 70, 1999.

[24] G. Reinelt. The traveling salesman: computational solutions for TSP applications. Springer-Verlag, Lecture Notes in

Computer Science, Vol: 840, 1994.

[25] D. Richards. Data compression and gray-code sorting. Information Processing Letters, 22:201–205, 1986.

[26] D. Salomon. Data Compression 2nd edition. Springer Verlag, New York, 2000.

[27] H. Samet. The Design and Analysis of Spatial Structures. Addison Wesley Publishing Company, Inc., Massachusetts,

1989.

[28] SciDAC. Scientific data management center. http://sdm.lbl.gov/sdmcenter/, 2002.

[29] A. Shoshani, L.M. Bernardo, H. Nordberg, D. Rotem, and A.Sim. Multidimensinal indexing and query coordination for

tertiary storage management. In SSDBM, pages 214–225, 1999.

[30] SNAP. Supernova acceleration probe. http://snap.lbl.gov/, 2004.

[31] K. Stockinger. Bitmap indices for speeding up high-dimensional data analysis. In DEXA, 2002.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 32

[32] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search methods in

high-dimensional spaces. In Proceedings of the Int. Conf. on Very Large Data Bases, pages 194–205, New York City,

New York, August 1998.

[33] K. Wu, E. J. Otoo, and A. Shoshani. A performance comparison of bitmap indexes. In Proceedings of the 2001 ACM

CIKM International Conference on Information and Knowledge Management, pages 559–561, Atlanta, Georgia, November

2001.

[34] K. Wu, E. J. Otoo, and A. Shoshani. Compressing bitmap indexes for faster search operations. In SSDBM, pages 99–108,

Edinburgh, Scotland, UK, July 2002.

[35] K. Wu, E. J. Otoo, and A. Shoshani. An efficient compression scheme for bitmap indices. Technical Report 49626, LBNL,

April 2004.

[36] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap indexes with efficient compression. ACM Transactions on

Database Systems, 2006.

[37] M. J. Zaki and J. T. L. Wang. Special issue on bioinformatics and biological data management. Information Systems,

28:241–367, 2003.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 33

(a) WAH (b) Gray code (GC) reordering

(c) Columns ordered by increasing compress-

ibility and plotted by column number

(d) Columns ordered by increasing compress-

ibility and plotted by column order

(e) Columns ordered by decreasing compress-

ibility and plotted by column number

(f) Columns ordered by decreasing compress-

ibility and plotted by column order

Fig. 10. Compressed size of each column of HEP1 data for WAH Alone, Gray code reordering and Gray code reordering with

column ordering.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 34

(a) WAH (b) Gray code (GC) reordering

(c) Columns ordered by increasing compress-

ibility and plotted by column number

(d) Columns ordered by increasing compress-

ibility and plotted by column order

(e) Columns ordered by decreasing compress-

ibility and plotted by column number

(f) Columns ordered by decreasing compress-

ibility and plotted by column order

Fig. 11. Compressed size of each column of HEP1 RE data for WAH Alone, Gray code reordering and Gray code reordering

with column ordering.

August 24, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, AUGUST XXXX 35

(a) Point Queries (b) Range Queries

Fig. 12. Query execution times for (a) point queries and (b) range queries.

August 24, 2006 DRAFT


